[1] Y.Lei, A.P.Liao, W.L.Qiao, Iterative methods for solving consistent or inconsistent matrix inequality AXB>= C with linear constraints, Applied Mathematical Modelling, 39(2015), 4151-4163 [2] Y.Lei, The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense, Numerical Algorithms, 69(2015):227-251. [3] H.W.Pan, Y.Lei, Iterative method for the least squares problem of a matrix equation with tridiagonal matrix constraint, Electronic Journal of Linear Algebra, 23 (2012), 1001-1022. [4] L. Fang, A.P.Liao, Y.Lei, A minimal residual algorithm for the inconsistent matrix equation AXB+CYD=E over symmetric matrices, Numer. Math. J. Chinese Univ. 32 (2010), 71–81. [5] S.F.Yuan, A.P.Liao, Y.Lei, Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices, Comput. Math. Appl.,55 (2008), 2521-2532. [6] A.P.Liao, Y.Lei, Least-Squares Solutions of matrix inverse problem for bi-Symmetric matrices with a submatrix constraint, Numer. Linear Algebra Appl., 14 (2007), 425-444. [7] Y.Lei, A.P.Liao, A minimal residual algorithm for the inconsistent matrix equation AXB=C over symmetric matrices, Appl. Math. Comput., 188 (2007), 499-513. [8] Y.Lei, A.P.Liao, Minimization problem for symmetric orthogonal anti-symmetric matrices, J. Comput. Math., 25:2 (2007), 211-220. [9] Y.Lei, A.P.Liao, The best approximation problem for a matrix equation on the linear manifold, J. Numer. Methods Comput. Appl., 28 (2007), 1–10. [10] A.P.Liao, Y.Lei, The matrix nearness problem for symmetric matrices associated with the matrix equation [AXA^T,BXB^T]=[C,D], Linear Algebra Appl., 418 (2006), 939-954. [11] A.P.Liao, Z.Z.Bai, {\bf Y.Lei}, Best approximate solution of matrix equation AXB+CYD=E, SIMA J. Matrix Anal. Appl., 27:3 (2006), 675-688. [12] A.P.Liao, Y.Lei, Least-squares solution with the minimum-norm for the matrix equation (AXB, GXH)=(C, D), Comput. Math. Appl., 50 (2005), 539–549. |