信息与计算科学系
您现在的位置: 首页 > 师资队伍 > 信息与计算科学系 > 正文

郑光辉

发布时间:2019-11-06 14:01    浏览次数:    来源:

姓名:

郑光辉

 

学历/学位:

博士/理学博士

职称:

副教授

Email

zhenggh2012@hnu.edu.cn

电话:

 

办公室:

 

个人主页:

1. https://www.researchgate.net/profile/Guang_Hui_Zheng/research

2. http://math.hnu.cn/index.php?option=com_teachers&type=2&teacher_id=114

3. http://www.ams.org/mathscinet/search/author.html?mrauthid=740802

 

 

 

 

学习经历

[1] 2012.7-present, Assistant Professor, Hunan University (湖南大学).

[2] 2007.9-2012.7, Ph.D. of applied mathematics, inverse problem for PDE, Lanzhou University (兰州大学:硕博连读).

[3] 2015.3-2016.3, Visting scholar, Ecole Normale Superieure (巴黎高师).

主要论文著作

主要研究方向:

(1)等离子共振分析、隐形设计、超分辨成像

[3] Z. Q. Miao and G. H. Zheng,  On uniqueness and nonuniqueness for potential reconstruction in quantum fields from one measurement II. the non-radial case, (2019), (Submitted).

[2] G. H. Zheng and Z. Q. Miao,  On uniqueness and nonuniqueness for potential reconstruction in quantum fields from one measurement, (2019), (Submitted).

[1] G. H. Zheng,  Mathematical analysis of plasmonic resonance for 2-D photonic crystal,  J. Differential Equations266 (2019), 5095–5117.

(2)贝叶斯统计反问题、偏微分方程反问题

[19] X. Y. Song, G. H. Zheng and L. J. Jiang,  Variational Bayesian inversion for reaction coefficient in space-time nonlocal diffusion equations, (2019), (Submitted).

[18] M. H. Ding and G. H. Zheng,  Determination of the reaction coefficient in a time dependent nonlocal diffusion process, (2019), (Submitted).

[17] G. H. Zheng and M. H. Ding,  Identification of the degradation coefficient for an anomalous diffusion process in hydrology, Inverse Problems (2019) (Accepted).

[16] G. H. Zheng,  Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method, Appl. Numer. Math., 135 (2019), 99–128.

[15] X. Y. Song, G. H. Zheng and L. J. Jiang,  Identification of the reaction coefficient in time fractional diffusion equations, J. Comput. Appl. Math.345 (2019), 295–309.

[14] G. H. Zheng and Q. G. Zhang,  Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method, Math. Comput. Simulation, 148 (2018), 37–47.

[13] G. H. Zheng and Q. G. Zhang, Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method, Inverse Problems in Science and Engineering, (2016).

[12] G. H. Zheng and Q. G. Zhang, Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. Appl. Math. Lett. 61 (2016), 143–148.

[11] G. H. Zheng, Recover the solute concentration from source measurement and

boundary data, Inverse Problems in Science and Engineering, 23 (2015), 1199-1221.

[10] C. Shi, C. Wang, G. H. Zheng and T. Wei, A new a posteriori parameter

choice strategy for the convolution regularization of the space-fractional backward diffusion problem, Journal of Computational and Applied Mathematics, 279 (2015), 233-248.

[9] G. H. Zheng and T. Wei, Recover the source and initial value simultaneously

in a parabolic equation, Inverse Problems, 30 (2014), 065013 (35pp).

[8] H. Cheng, C. L. Fu, G. H. Zheng and J. Gao, A regularization for a Riesz-Feller

space-fractional backward diffusion problem, Inverse Problems in Science and Engineering, 22 (2013), 860-872.

[7] G. H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation, Advances in Computational Mathematics, 36 (2012), 377-398.

[6] G. H. Zheng and T. Wei, A new regularization method for the time fractional

inverse advection-dispersion problem, SIAM Journal on Numerical Analysis, 49 (2011), 1972-1990.

[5] G. H. Zheng and T. Wei, A new regularization method for solving a time fractional inverse diffusion problem, Journal of Mathematical Analysis and Applications, 378 (2011), 418-431.

[4] G. H. Zheng and T. Wei, Spectral regularization method for a time fractional

inverse diffusion problem, Applied Mathematics and Computation, 218 (2011), 396-405

[3] G. H. Zheng and T. Wei, Two regularization methods for solving a Riesz-Feller

space-fractional backward diffusion problem, Inverse Problems, 26 (2010), 115017 (22pp).

[2] G. H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem

of the time fractional advection-dispersion equation, Journal of Computational and Applied Mathematics, 233 (2010), 2631-2640.

[1] G. H. Zheng and T. Wei, Spectral regularization method for the time fractional inverse advection-dispersion equation, Mathematics and Computers in Simulation, 81 (2010), 37-51.

 

博士研究生:丁明慧

硕士研究生:苗志强、王丽丽、孙泽军、姚远

(欢迎有一定数学基础,喜欢写程序,或者对概率统计有兴趣的学生报考我的研究生)

 

担任下列学术期刊的审稿人,并被国际反问题权威期刊《Inverse Problems》评为2016“Outstanding Reviewer Awards 2016”

Inverse Problems;

Journal of Inverse and Ill-Posed Problems;

Inverse Problems in Science and Engineering;

Journal of Physics A: Mathematical and Theoretical;

Applied Numerical Mathematics;

Mathematical Methods in the Applied Sciences;

Mathematics and Computers in Simulation;

Journal of Engineering Mathematics;

Acta Mathematica Scientia;

科研项目

[1] NSF of China (Source identification in spatial domain anomalous diffusion:

regularization theory and algorithms), January, 2014 - December, 2016.

[2] Funds for the growth of young teachers of Hunan University, September, 2012

- September, 2017.

[3] Funds for the Ph.D. academic newcomer award of Lanzhou University (Inverse

problems in Fractional PDEs), June, 2011 - June, 2012.

讲授课程

[1] Advanced Algebra.

[2] Numerical Analysis.

[3] Mathematical Software.

[4] Numerical solution of PDEs.

本期讲授课程

[1] Numerical Analysis.

[2] Numerical solution of PDEs.

[3] Mathematical Software.

[4] Stochastic process.

 

 

上一篇:雷渊

下一篇:陈高洁

湖南大学版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备05000239号]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]