学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20181026 王鹏 Willmore Stability and Morse Index of Minimal Surfaces in Spheres

发布时间:2018-10-22 10:28    浏览次数:    来源:

题目:Willmore Stability and Morse Index of Minimal Surfaces in Spheres

报告人:王鹏(教授,福建师范大学)

时间:2018年10月26日(周五)下午16:00-17:00

地点:数学院二楼203报告厅

摘要:We aim at the Willlmore conjecture in higher co-dimension. Urbano's index Theorem on Clifford torus plays an important role in Marques and Neves's proof of Willmore conjecture in S^3. We generalize Urbano Theorem to minimal tori in S^4 by showing that a minimal torus in S^4 has index at least 6 and the equality holds if and only if it is the Clifford torus.

It is also natural to ask whether the Clifford torus is Willmore stable when the co-dimension increases and whether there are other Willmore stable tori or not. We answer these problems for minimal tori in S^n, by showing that the Clifford torus in S^3 and the equilateral Bryant-Itoh-Montiel-Ros torus in S^5 are the only Willmore stable minimal tori in arbitrary higher co-dimension. Moreover, the Clifford torus is the only minimal torus (locally) minimizing the Willmore energy in arbitrary higher co-dimension. And the equilateral (Bryant-Itoh-Montiel-Ros) torus is a (local) constrained-Willmore minimizer, but not a (local) Willmore minimizer.

This is a joint work with Prof. Rob Kusner (UMass Amherst).

湖南大学版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备05000239号]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]