报告题目: Unique solvability and convergence analysis of the Lagrange multiplier approach for gradient flows
报告人:王成 教授(University of Massachusetts Dartmouth)
邀请人:宋怀玲
时间:6月11日下午15:30-16:30
地点:数学院425
报告摘要:The unique solvability analysis and error estimate of the Lagrange multiplier approach for gradient flows is theoretically analyzed. We identify a necessary and sufficient condition that has to be satisfied for the nonlinear algebraic equation arising from the original Lagrange multiplier approach to admit a unique solution in the neighborhood of its exact solution. In turn, a modified Lagrange multiplier approach is proposed so that the computation can continue even if the aforementioned condition is not satisfied. Using Cahn-Hilliard equation as an example, we rigorously establish the unique solvability analysis and optimal error estimates of a second-order Lagrange multiplier scheme assuming this condition and that the time step size is sufficient small.
报告人简介:
王成教授,1993年于中国科学技术大学数学系获得学士学位,2000年于坦普尔大学获得博士学位。2000年至2003年于印第安纳大学担任博士后,2003年至2008年于田纳西大学担任助理教授。 2008年至2012年于University of Massachusetts Dartmouth担任助理教授, 2012年至2019年于University of Massachusetts Dartmouth担任副教授, 2019年至今于University of Massachusetts Dartmouth担任教授。王教授的研究兴趣为针对流体力学、电磁力学、 材料科学中涉及的偏微分方程的数值方法研究。主要在SIAM、JCP、JSC等发表了百余篇论文, 被引用超过5000次。