报告题目:On the Prandtl's Boundary Layer Theory for Steady Sink-Type Flows
报告人:辛周平教授(香港中文大学)
时间:11月15日(周五)10:00-11:00
地点:数学学院425
摘要:In this talk, I will present some results on the large Reynolds number limits and asymptotic behaviors of solutions to the steady incompressible Navier-Stokes equations in two-dimensional infinitely long convergent nozzles. The main results show that the Prandtl's laminar boundary layer theory can be rigorously established and the sink-type Euler flow superposed with a self-similar Prandtl's boundary layer flow is shown to be uniformly structurally stable as long as the viscous flow has a given negative mass flus and the boundaries of the nozzle satisfy a curvature decreasing condition.Furthermore, the asymptotic behaviors of the solutions at both the vertex and infinity can be determined uniquely which plays a key role in the stability analysis. Some of key ideas in the theory will be discussed.This talk is based on a joint work with Dr.Chen Gao.
辛周平教授简历:著名数学家,现任香港中文大学数学科学研究所执行所长、蒙民伟数学讲座教授。他1988年在美国密歇根大学获数学博士学位,后加入美国纽约大学柯朗数学研究所,1996年成为终身教授。1991年4月获美国“Sloan奖”(美国优秀博士后奖),1993年9月获得美国为杰出青年颁发的“美国总统奖”,2002年在国际数学家大会上应邀做45分钟报告,在2004年举办的“国际华人数学家大会”上,获得“晨兴数学金奖”,这是华人数学界的最高荣誉。他在偏微分方程、流体动力学、数学物理、非线性波、边界层理论、数值分析等领域做出了许多国际领先的重大学术成果,至今发表研究文章近200篇,引用超1万2千余次。