报告题目:Global strong solutions for the multi-dimensional compressible viscoelastic flows with general pressure law
报告人:张挺
时间地点:2024年4月6日(周六下午)15:00-16:00,数学院203
邀请人:张华丽
报告摘要:In this talk, we mainly focus on the compressible viscoelastic flows of Oldroyd type with the general pressure law, with one of the non-Newtonian fluids exhibiting the elastic behavior. For the viscoelastic flows of Oldroyd type with the general pressure law, $P′(\bar{\rho})+\alpha>0$, with $\alpha > 0$ being the elasticity coefficient of the fluid, we prove the global existence and uniqueness of the strong solution in the critical Besov spaces when the initial data $u_0$ and the low frequency part of $\rho_0$, $\tau_0$ are small enough compared to the viscosity coefficients. In particular, when the viscosity is large, the part of the initial data can be large. The proof we display here does not need any compatible conditions. In addition, we also obtain the optimal decay rates of the solution in the Besov spaces. (Based on the work with Yu Liu; Song Meng Jiayan Wu)
报告人简介:张挺,浙江大学数学科学学院教授,博士生导师,数学科学学院数学系系主任,教育部自然科学奖二等奖(第三完成人),基础学科拔尖学生培养计划2.0 优秀管理人员奖,浙江省教学成果奖一等奖(6/8),长期从事流体力学偏微分方程(组)的数学理论研究,在可压缩与不可压缩Navier-Stokes、MHD方程、粘弹性流体力学方程等取得系列重要研究成果,发表在CMP、ARMA、SJMA、IMRN、JDE等国际期刊。。