报告题目:Well-posedness of classical solutions to the vacuum free boundary problem of the viscous Saint-Venant system for shallow waters
报告人:王跃循教授(兰州大学数学与统计学院)
邀请人;熊林杰
时间:12月15日(周四)15:00-16:00(北京时间)
腾讯会议:228 395 775(无密码)
摘要:We establish the local-in-time well-posedness of classical solutions to the vacuum free boundary problem of the viscous Saint-Venant system for shallow waters derived rigorously from incompressible Navier-Stokes system with a moving free surface by Gerbeau and Perthame. Our solutions are smooth to the moving boundary, although the initial height degenerates as a singularity of the distance function to the vacuum boundary.
报告人简介:王跃循,兰州大学数学与统计学院教授,博士生导师,国家特聘青年专家。主要从事流体力学偏微分方程与色散偏微分方程的研究,相关结果发表在ARMA、 CPDE、SIMA、JDE等国际数学期刊。