题目:A bi-fidelity method for the uncertain Vlasov-Poisson system near quasineutrality in an asymptotic-preserving particle-in-cell framework
报告人:王艳莉研究员(北京计算科学研究中心)
时间:2025年10月27日上午9:30-10:30
地点:数学院425报告厅
摘要:In this paper, we study the Vlasov-Poisson system with massless electrons (VPME) near quasineutrality and with uncertainties. Based on the idea of reformulation on the Poisson equation by [P. Degond et.al., Journal of Computational Physics, 229 (16), 2010, pp. 5630--5652], we first consider the deterministic problem and develop an efficient asymptotic preserving particle-in-cell (AP-PIC) method to capture the quasineutral limit numerically, without resolving the discretizations subject to the small Debye length in plasma. The main challenge and difference compared to previous related works is that we consider the nonlinear Poisson in the VPME system which contains $e^{\phi}$ (with $\phi$ being the electric potential) and provide an explicit scheme. In the second part, we extend to study the uncertainty quantification (UQ) problem and develop an efficient bi-fidelity method for solving the VPME system with multidimensional random parameters, by choosing the Euler-Poisson equation as the low-fidelity model. Several numerical experiments are shown to demonstrate the asymptotic-preserving property of our deterministic solver and the effectiveness of our bi-fidelity method for solving the model with random uncertainties.
报告人简介: 王艳莉博士,北京计算科学研究中心特聘研究员,入选国家高层次青年人才计划。2014年至2017年在北京应用物理与计算数学研究所担任助理研究员,2019年7月至今在北京计算科学研究中心工作。主要从事偏微分方程数值解和稀薄气体动理学相关研究;主持了国家自然科学基金面上;获得了中国工程物理研究院院长基金支持;有30 余篇研究成果在SIAM J. Sci. Comput., J. Fluid Mech.等国际一流学术期刊上发表。